If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9.8t^2-25t-50=0
a = 9.8; b = -25; c = -50;
Δ = b2-4ac
Δ = -252-4·9.8·(-50)
Δ = 2585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{2585}}{2*9.8}=\frac{25-\sqrt{2585}}{19.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{2585}}{2*9.8}=\frac{25+\sqrt{2585}}{19.6} $
| -7u+2(u-8)=-26 | | -1/5(x-15)=-4 | | 8x+2=86 | | x+0.1x=28500 | | 8x+3/2x+5=3 | | 2m^2+5m-18=0 | | 3t-12+5t+3t+5=180 | | 2m2+5m-18=0 | | 2x-4/4-(1-x)/6=17 | | 4y+10+2y+5y-14=180 | | 2^x+3=1/32 | | 3x+9=4x-2+3x | | 5(2x-1)=5(5-14) | | 32=3z-2 | | 8x4=X(x•7)-(x•3) | | 5x−3−7x=15−x | | 7y-4=3 | | -2(5x-7)=34 | | 5(2x-1)=(5x-14) | | 40+x=369 | | 2(7r-9)=24 | | 5w−13=32 | | f/5−20=−29 | | -3(2x-6)+5(3x-4)=25 | | -3(2x+5)+5(3x+6)=42 | | 7+s=3 | | 4(3x+5)-3(2x+4)=20 | | k/18=12.1/3 | | 4(2x+4)+5(3x-6)=-83 | | 3(3x+6)+2(2x+5)=67 | | 4x=40000 | | -5(4x+6)+3x-7=14 |